数学分析里面的几类点

一、驻点
导函数为零的点。

二、极值点
极值点定义:对于函数 f(x) 若存在一个 x0 的邻域,使得这个邻域里面的点的函数值都大于(小于) f(x0) x0 就成称为函数 f(x) 的极小值点(极大值点)。
如果是连续函数有导函数为零,且极值点左右两侧的点导函数异号。

三、拐点
拐点是函数凹凸性的分界点,曲线在拐点两侧分别是严格凸和严格凹的(与单调性无关)。

四、鞍点
例如函数 f(x,y) ,在点 (x0,y0) 处是关于 x 的极大值,关于y的极小值,那么 (x0,y0) 就是函数 f(x,y) 一个鞍点。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页