一、驻点
导函数为零的点。
二、极值点
极值点定义:对于函数
f(x)
若存在一个
x0
的邻域,使得这个邻域里面的点的函数值都大于(小于)
f(x0)
,
x0
就成称为函数
f(x)
的极小值点(极大值点)。
如果是连续函数有导函数为零,且极值点左右两侧的点导函数异号。
三、拐点
拐点是函数凹凸性的分界点,曲线在拐点两侧分别是严格凸和严格凹的(与单调性无关)。
四、鞍点
例如函数
f(x,y)
,在点
(x0,y0)
处是关于
x
的极大值,关于